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  Abstract—Transcranial focused ultrasound (tFUS) is a 

promising non-invasive technique for treating neurological 

and psychiatric disorders. One of the challenges for tFUS is 

the disruption of wave propagation through the skull. 

Consequently, despite the risks associated with exposure to 

ionizing radiation, computed tomography (CT) is required 

to estimate the acoustic transmission through the skull. This 

study aims to generate synthetic CT (sCT) from T1-

weighted magnetic resonance imaging (MRI) and 

investigate its applicability to tFUS acoustic simulation. We 

trained a 3D conditional generative adversarial network 

(3D-cGAN) with 15 subjects. We then assessed image 

quality with 15 test subjects: mean absolute error (MAE) = 

85.72± 9.50 HU (head) and 280.25±24.02 HU (skull), dice 

coefficient similarity (DSC) = 0.88±0.02 (skull). In terms of 

skull density ratio (SDR) and skull thickness (ST), no 

significant difference was found between sCT and real CT 

(rCT). When the acoustic simulation results of rCT and sCT 

were compared, the intracranial peak acoustic pressure 

ratio was found to be less than 4%, and the distance 

between focal points less than 1 mm. 

 

Index Terms— Transcranial focused ultrasound, acoustic 

simulation, single-element transducer, synthetic CT, MRI-

only, generative adversarial network, conditional GAN 

I. INTRODUCTION 

ranscranial focused ultrasound (tFUS), in which acoustic 

energy is delivered to a small and localized area in the brain, 

has been widely applied as a non-invasive therapeutic tool. The 

tissue ablation using the thermal and mechanical energy 

generated from the acoustic focus is one of the basic 

applications of tFUS. In addition, a number of previous studies 

have also shown that brain stimulation using the low-intensity 

tFUS can evoke neuromodulatory effects in healthy humans 

without any thermal or non-thermal damages on the brain tissue 

[1]–[3]. 

To attain more accurate targeting and higher spatial 

resolution of acoustic focus, the multi-array transducer system 
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which can implement the phase correction scheme was 

preferred in the thermal ablation field. This equipment is, 

however, generally expensive and complex. As an alternative 

to a multi-array system, a single-element transducer has been 

widely used because of its cost efficiency and lower complexity. 

Although lacking an aberration correction mechanism, this 

particular type of transducer successfully modulated the 

neuronal activity in the brain [4]–[6]. 

Regardless of the type of transducer, the biggest challenge to 

all field of tFUS application is the presence of the skull, which 

can shift or distort acoustic focus in the brain due to the large 

mismatch of acoustic properties between different media (i.e., 

speed of sound, density, and attenuation coefficient) [7]. 

Therefore, computed tomography (CT) is adopted to precisely 

estimate acoustic wave propagation through the skull, using the 

Hounsfield unit (HU) of the CT scan to convert to the acoustic 

properties of the skull [8]–[10]. However, exposure to ionizing 

radiation during CT scanning may increase patients’ lifetime 

risk of developing cancer [11], [12].  

As an alternative to CT, efforts have been made to extract 

skull information from magnetic resonance imaging (MRI). 

Previous studies suggested that ultrashort echo time (UTE) and 

zero echo time (ZTE) MRI sequences can contrast the bone 

against the soft-tissue [10], [13]. Deep learning-based methods 

have also been proposed for synthesizing CT from MRI, such 

as by using a convolutional neural network (CNN) or a 

generative adversarial network (GAN). Han et al. proposed the 

CNN-based model for generating synthetic CT (sCT) from T1-

weighted (T1w) MRI [14]. Emami et al. demonstrated a 

conditional-GAN (cGAN)-based model featuring less noise 

during detailed reconstruction at bone/air interfaces than the 

CNN-based method  [15]. CycleGAN was also adopted by 

some studies and showed better performance in terms of 

misalignment errors [16], [17].  

There have been studies on multi-array tFUS treatment 

planning using UTE-MRI data, which focus on thermal ablation. 

Guo et al. showed acoustic and thermal distributions in the brain 

using a UTE-based skull structure [10]. Su et al. also indicated 

the feasibility of UTE-based sCT for tFUS treatment planning 

[18]. Since these studies focused on the tFUS application of 
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thermal ablation, the peak acoustic intensity and temperature 

change between sCT and rCT were mainly considered, rather 

than the location and shape of the acoustic focus.  

Unlike the previous studies, this study aims to generate sCT 

from T1w MRI and investigate its feasibility in acoustic 

simulation for tFUS neuromodulation with a single-element 

transducer. We suggested a 3D-cGAN featuring residual blocks 

and a combination of multiple loss functions to enhance the 

quality of sCT. In addition to evaluating the image quality and 

associated skull characteristic measurements of the proposed 

method, acoustic simulation results of sCT were compared to 

those of real CT (rCT) under the same sonication configuration. 

We have validated the results with three brain regions, 

including the primary motor cortex (M1), primary visual cortex 

(V1), and dorsal anterior cingulate cortex (dACC), which have 

shown the neuromodulatory effects by tFUS stimulation [19]–

[21]. 

II. METHODS 

A. Data acquisition 

We used the brain CT and MRI data acquired from 33 

subjects. The CT images were scanned on a Toshiba scanner 

(Aquilion ONE, Otawara, Japan) with 120 kVp, with a range of 

0.4-0.53  0.4-0.53  0.3-1.0mm3 resolutions, in a 512  512 

in-plane matrix. The MRI data were acquired using a 3-T 

Siemens scanner (Skyra, Erlangen, Germany) with a T1-

weighted Magnetization Preparation Rapid Acquisition 

Gradient Echo (MPRAGE) pulse sequence (2.46 ms echo time 

[TE], 1900 ms repetition time [TR], 900 ms inversion time [TI], 

9° flip angle, 0.94 × 0.94 × 0.94 mm3 resolution, and 256 × 256 

in-plane matrix). Typically, MPRAGE sequences consist of a 

non-selective (180º) inversion pulse with TI of 800-1200 ms, 

which is followed by rapidly acquired gradient echoes at short 

TE of 2-4 ms and flip angles of 8-12º [22]. The TR is relatively 

long, approximately 2000 ms. We used the imaging parameters 

of the MPRAGE-based T1w MRI that have been utilized for the 

tFUS neuromodulation studies [23], [24]. The Institutional 

Review Board (IRB) of Incheon St. Mary’s Hospital, South 

Korea, approved the entire study protocol. 

B. Image preprocessing 

N4 bias field correction was applied to the MRI data to 

correct intensity inhomogeneity, and rigid registration was 

performed to align the corresponding CT to the MRI, both 

performed by the ‘N4ITKbiasfieldcorrection’ and ‘Elastix’ 

modules of 3D Slicer (version 4.11.0) [25]–[27]. The MRI and 

CT data were resampled and padded with air values (0 for MRI; 

-1000 HU for CT) to a 256  256  256 volume with a spacing 

of 0.94 mm. The image backgrounds were removed with a 

binary mask of each subject’s brain by selecting the largest 

continuous voxel region above a specific threshold value (100) 

of the MRI data [15], [28]. Holes in the masks were filled by a 

binary fill hole operation with dilation and erosion using the 

‘ndimage’ module of SciPy [29]. These procedures ensured that 

the region of interest was not excluded from the registered CT. 

The voxel regions of MRI and CT outside the mask were 

respectively filled with air values. The intensities of MRI were 

clipped to a range of [0, 2500] which is the [0, 99.5th] percentile 

intensity value of the bias field corrected MRI [30]. After 

hyperparameter tuning (details in II.C.3), we investigated the 

effect of MRI intensity normalization for sCT generation by 

applying two different approaches (i.e., Z-score, and Piecewise 

linear Histogram matching [HM]) and compared the 

performance with raw MRI. The Z-score method normalizes the 

MRI using the mean (μ) and the standard deviation (σ) of MRI 

intensities within the head : MRIZ_score =  
MRI − μ 

σ
. This method 

was applied to each of MRI volumes. The HM normalization 

linearly maps the intensity of each MRI to align with the 

standard histogram, which was learned from a set of reference 

MRI volumes [31]. The mean intensities histogram at the 

landmarks were defined as the standard histogram. The 

locations of landmarks that were determined within [1st, 99th] 

percentiles with a step of 10 (i.e., [1st, 10th], [10th, 20th], …, [90th, 

99th]) were used [32]. The standard histogram was acquired 

from MRIs in our training set and applied to all datasets, 

including training, validation, and test set. The detailed methods 

of MRI normalizations are available in previous studies [31], 

[32] with code implementations [33]. Both the raw and 

normalized MRI were linearly scaled to [-1, 1] and used as input 

of the cGAN model. The HU intensities of CT were clipped to 

a range of [-1000, 3000] followed by a linear scaling to [-1, 1]. 

C. Network overview 

In this study, we were motivated to use the conditional 

generative adversarial network (cGAN) to generate sCT [34]. 

The proposed network consists of a generator and a 

discriminator. The schematic diagram of the proposed network 

is illustrated in Fig. 1. 

1) cGAN architecture  
 

As shown in Fig. 1b, the generator is an encoder-decoder 

type network featuring nine residual blocks. The encoder 

section consists of three convolutional layers with down- 

sampling operations to reduce the size of the feature map. After 

the encoder, the nine continuous residual blocks are 

implemented to mitigate the level of the vanishing gradient. 

Each residual block is composed of two convolutional layers 

with a dropout layer to prevent overfitting (Fig. 1c). 

Consecutive residual blocks are concatenated. In the decoder 

section, two up-sampling layers with transposed convolutional 

layers are utilized to reconstruct the size of the feature map. 

Reflection paddings are applied in the middle of the layers to 

preserve the size of the output. All convolutional layers are 

followed by instance normalization and ReLU activation except 

for the last layers of the residual block and decoder. Lastly, tanh 

activation is employed to make the generator generalize images 

in the range of [-1, 1].   

We adopted the discriminator network based on PatchGAN 

[34], consisting of five consecutive convolutional layers, which, 

except for the first and last layer, are followed by instance 

normalization and LeakyReLU (slope=0.2) (Fig. 1d). The node 

in the last layer with the sigmoid activation function determines 

the probabilities of rCT or sCT in the range of [0, 1].  
 

2) Loss functions 
 

The generator (𝐺 ) and discriminator (𝐷 ) are trained by 

optimizing parameters ( 𝜃𝐺  and 𝜃𝐷 ), which reflect the 

adversarial goals of each network: 
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𝜃𝐺 = arg min

𝜃𝐺

(𝜆1𝐿𝐺,𝑙𝑠(𝐺, 𝐷) + 𝜆2𝐿𝑚𝑝𝑑(𝐺)

+ 𝜆3𝐿𝑔𝑑𝑙(𝐺)) 
(1) 

 𝜃𝐷 = arg min
𝜃𝐷

(𝐿𝐷,𝑙𝑠(𝐺, 𝐷)) (2) 
 

where λ1, λ2, and λ3 indicate the weight factors of each loss 

function. The loss functions of the generator are composed of 

three losses: least-squares loss (LS), mean p distance loss 

(MPD), and image gradient difference loss (GDL).  

LS is known to enhance the stability of GAN [35], and is 

defined as:   
 

 𝐿𝐺,𝑙𝑠 = (𝐷(𝐺(𝑋)) − 1)2 (3) 
 

where X is the source MRI, and 𝐺(𝑋) is the sCT. 𝐷(𝐺(𝑋)) is 

the output of discriminator which indicates judgment of sCT. 

This enhances the misjudgment of the discriminator by 

minimizing the difference between 𝐷(𝐺(𝑋)) and 1, where 1 

indicates a label for rCT. 

MPD is known to overcome the blurry image and 

misclassification issues that occur when using traditional 

distance loss functions [16] (p = 1.5): 
 

 𝐿𝑚𝑝𝑑 = ‖𝐺(𝑋) − 𝑌‖𝑝
𝑝
 (4) 

 

where  𝑌 is the rCT of the corresponding MRI.  

GDL is known to help generate more realistic and sharp sCT 

by minimizing differences between the gradients [16], [36]: 
 

 

𝐿𝑔𝑑𝑙 = ||𝛻𝐺(𝑋)𝑥| − |𝛻𝑌𝑥||2       

     +||𝛻𝐺(𝑋)𝑦| − |𝛻𝑌𝑦||
2

 

     +||𝛻𝐺(𝑋)𝑧| − |𝛻𝑌𝑧||2 

(5) 

 

These three losses were combined and minimized to optimize 

the generator. 

The discriminator loss is defined as: 
 

 

 

where D(Y) and D(G(X)) are the decisions of the discriminator 

using rCT and sCT. The output of the discriminator is the 

probability to be rCT (1 being rCT and 0 being sCT). The 

discriminator is trained to predict the correct label (1 for rCT, 0 

for sCT) by minimizing the LS cost functions. 
 

3) Training  
 

Paired CT and MRI data from 15 pseudo-randomly selected 

subjects were used to train the proposed model. In the training 

phase, data augmentation was performed at every epoch to 

provide diverse data to the generator and prevent overfitting 

problems. The applied factors are as follows: rotation in the 

range [-3.5°, 3.5°], shearing in the range [0.97, 1.03], zoom in 

the range [0.7, 1.3], and horizontal flip with a 0.5 probability 

[30], [37].The same factors were applied to the MRI and CT 

 𝐿𝐷,𝑙𝑠 = (𝐷(𝑌) − 1)2 + (𝐷(𝐺(𝑋)))2 (6) 

 
Fig. 1.  a) Schematic diagram of training and test flow. b) The proposed generator. c) The residual blocks. d) The proposed discriminator. The number of filters are 

described below each layer in (b) and (d). 
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data of each pair. Additionally, from each 256 × 256 × 256 MRI 

and CT volume, we extracted 3D patches of 64 × 64 × 64 voxels 

using a 16 × 16 × 16 stride and fed them to the generator to 

synthesize CT patches. We obtained 2,200 sets of the paired 

MRI and CT patches for each subject. Thus, the total number of 

paired patches used for training was 33,000 (2,200 × 15 

subjects). We utilized 2,200 randomly selected paired patches 

of MRI and CT for each epoch with an additional augmentation 

scheme. The MRI patches were fed to the generator to 

synthesize the corresponding CT patches, and the paired 

patches of rCT and sCT were fed to the discriminator (Fig. 1a). 

We set a mini-batch size of 1 to maintain the size of patches to 

64 × 64 × 64 rather than smaller patches and to prevent GPU 

memory crashes that can break down the process of cGAN 

training. The size of patches was small enough to fit on the 

physical memory of GPU but large enough to provide 

continuous anatomical structures. Using the 3D patches rather 

than a whole brain volume, we were able to increase the size of 

the training dataset. The initial learning rate of both generator 

and discriminator was 0.0002, and this linearly decayed after 

epoch 100 [30], [38]. The total number of epochs was 400. The 

Adam optimizer was used for optimization with β1 = 0.5 and β2 

= 0.9. Five possible scenarios for weight factors of generator 

loss λ1, λ2 and λ3 were considered to evaluate the performance 

depending on these hyperparameters (Table II): 1) MPD [λ1=1, 

λ2=40, λ3=0], 2) GDL [λ1=1, λ2=0 , λ3=40], 3) MPD = GDL 

[λ1=1, λ2=20 , λ3=20], 4) MPD > GDL [λ1=1, λ2=30 , λ3=10], 

and 5) MPD < GDL [λ1=1, λ2=10 , λ3=30]. The λ1 remained at 

1 to set a baseline magnitude level for λ2 and λ3. Three subjects 

separated from the training (n = 15) and test (n = 15) subjects 

were used to estimate validation performance. The training and 

validation/test of the model were performed using our GPU 

server (i.e., Intel Xeon Gold 5120, 8 NVIDIA GeForce RTX 

2080 Ti GPUs 11 GB; 512 GB RAM). 

D. Target selection 
 

Before the acoustic simulation, three brain regions (M1, V1, 

and dACC) were selected as potential targets for tFUS 

application. Due to limitations of focal length, deep brain areas 

(e.g., the thalamus) were excluded. In order to obtain the 

subject-specific coordinates of these target regions, the T1w 

template of ICBM152 [39] was co-registered to the T1w images 

of each subject utilizing the ‘Elastix’ module in 3D Slicer. The 

obtained transformation matrices were used to transform the 

target regions in MNI to subject-specific coordinates.  

E. Acoustic simulation 

We performed an acoustic simulation to assess the feasibility 

of sCT for tFUS application. The simulation was implemented 

in both rCT and sCT images under the same sonication 

conditions. A 200 kHz single-element bowl-shaped transducer 

(GPS 200, Ultran Group, USA) with a focal length of 55.2 mm 

was used. The 50 locations of the transducer were selected 

using the average reflection coefficient (ARC) method [9]. 

Since the result of acoustic propagation depends on spatial 

information of the transducer, various locations were 

considered as similarly in the realistic treatment planning 

procedure. The ARC is the mean ratio of the amplitude of the 

reflected acoustic wave to the incident acoustic wave at each 

transducer location. The lower ARCs indicate the more efficient 

locations that deliver acoustic energy to the brain target. By 

selecting transducer locations with the lowest 50th ARC among 

every possible location, we could avoid transducer locations 

that might induce total reflection of simulated acoustic waves 

caused by the skull and which make it difficult to compare 

intracranial acoustic fields using rCT and sCT. We performed 

4,500 acoustic simulations in total (i.e., 50 transducer locations 

× 3 target regions × 15 subjects × 2 CT data). 

The open-source k-Wave acoustics toolbox was used to 

obtain a time-independent solution to the wave equation [40]. 

The acoustic simulation domain was 160 × 160 × 160 grid 

points with a grid spacing of 1.02 mm, i.e., 7 points per acoustic 

wavelength (PPW) [7]. The simulation ended at 100 µs with a 

0.1 Courant-Friedrichs-Lewy (CFL) number. In the acoustic 

simulation, the CT images were used to obtain the subject’s 

skull structure. The CT images were cropped and resampled to 

the same size as the acoustic simulation domain. The acoustic 

properties (speed of sound, density, and attenuation coefficient) 

of the skull were calculated using HU to describe the porous 

and inhomogeneous characteristics of the skull. Based on the 

porosity of the skull (ψ) [10], the acoustic properties were 

obtained from (7) ~ (10). The acoustic properties of skull and 

water are summarized in Table I [7]. 
 

 𝜓 = 1 −
𝐻𝑈

𝑀𝑎𝑥(𝐻𝑈)
 (7) 

 𝑐𝑠𝑘𝑢𝑙𝑙 = 𝑐𝑤𝑎𝑡𝑒𝑟𝜓 + 𝑐𝑏𝑜𝑛𝑒(1 − 𝜓) (8) 

 𝜌𝑠𝑘𝑢𝑙𝑙 = 𝜌𝑤𝑎𝑡𝑒𝑟𝜓 + 𝜌𝑏𝑜𝑛𝑒(1 − 𝜓) (9) 

 𝛼𝑠𝑘𝑢𝑙𝑙 = 𝛼𝑤𝑎𝑡𝑒𝑟𝜓 + (𝛼𝑚𝑎𝑥,𝑠𝑘𝑢𝑙𝑙 − 𝛼𝑚𝑖𝑛,𝑠𝑘𝑢𝑙𝑙)𝜓0.5
 (10) 

 

F. Evaluation 

The paired CT and MRI data from the remaining 15 subjects 

were used as test data to evaluate the proposed method. The 

same preprocessing pipeline used for the training data was also 

applied to the paired CT and MRI test data. Since the input and 

output size of the generator is 64 × 64 × 64, the MRI patches of 

one subject were fed into the model to generate the sCT patches. 

The patches of sCT were fused by averaging overlapped voxel 

regions of patches using a 16 × 16 × 16 stride (Fig. 1a). The HU 

intensity values of the final sCT were rescaled from [-1, 1] to [-

1000 HU, 3000 HU], the same range as the training CT images. 

1) Image quality  
 

The mean absolute error (MAE) represents the absolute HU 

intensity difference between rCT and sCT (11) where n is the 

number of voxels in regions of interest, and 𝑟𝐶𝑇(𝑖) and 𝑠𝐶𝑇(𝑖) 

represent the intensities at voxel index i. 

TABLE I 

ACOUSTIC PROPERTIES 

Speed of sound 

(m/s) 

Density 

(kg/m3) 

Attenuation coefficient 

(Np/MHz/m) 

𝑐𝑏𝑜𝑛𝑒 = 3100 𝜌𝑏𝑜𝑛𝑒 = 2200 

𝛼𝑚𝑖𝑛,𝑠𝑘𝑢𝑙𝑙 = 21.5,  
𝛼𝑚𝑎𝑥,𝑠𝑘𝑢𝑙𝑙 = 208.9 

𝑐𝑤𝑎𝑡𝑒𝑟 = 1482 𝜌𝑤𝑎𝑡𝑒𝑟 = 1000 𝛼𝑤𝑎𝑡𝑒𝑟 = 0.0253 
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The MAEs were calculated for the whole head (MAEhead) and 

skull (MAEskull) region. The regions were defined as the 

intersected voxels with binary masks of rCT and sCT meeting 

specific thresholds, i.e., ≥–100HU and ≥250HU, respectively. 

The MAEhead was evaluated within only the head contour, in 

which the corresponding mask was defined to include air, soft 

and bony tissue by binary fill hole operation. 

The dice similarity coefficient of the skull (DSCskull) was also 

calculated to describe the overlapping of the skull region (12), 

where |𝑉𝑟𝐶𝑇| and |𝑉𝑠𝐶𝑇| represent the number of voxels in the 

skull area of each CT. 

2) Skull characteristics 
 

The skull density ratio (SDR) and the skull thickness (ST) 

were used to compare skull characteristics between rCT and 

sCT. These are known to be relevant factors for assessing 

acoustic transmission efficiency through the skull in clinical 

tFUS applications [41], [42]. The SDR is the mean ratio of the 

minimum to the maximum HU intensity along the skull paths 

of ultrasound rays. The ST is the distance between the first and 

last skull intersection coordinates of the ray paths. Both factors 

were calculated using the open-source software Kranion [43]. 

The SDR and ST were calculated for each of the three target 

regions (i.e., M1, V1, and dACC). Two-tailed paired t-test and 

Pearson’s correlation analysis were performed between the 

skull characteristics of rCT and sCT.  

3) Acoustic simulation 
 

We compared the acoustic simulation results from rCT and 

sCT, and three physical quantities were obtained: 1) intracranial 

peak pressure ratio (∆PR), 2) dice similarity coefficient of the 

acoustic focuses (DSCA90%), 3) distance between the acoustic 

focuses (∆F) from (13) ~ (15). 

 

The peak pressure in the brain was indicated as 𝑃. We defined 

the 3D region of acoustic focus as 90%-maximum of 

intracranial acoustic pressure (denoted as 𝐴90% in Fig. 7) [8]. 

The peak intracranial pressures of the rCT and sCT were 

calculated separately to define acoustic focus respectively. The 

centroid of the 𝐴90%  region was used as the location of the 

acoustic focus, and labelled C. All values obtained from the 

simulation result using sCT are denoted by a caret (i.e.,  �̂�,  
�̂�90%, and �̂�). 

III. RESULTS 

A. Image quality 

The image qualities of the following models were reported 

from a model of best validation performance among all epochs. 

The example of training and validation losses are depicted in 

Fig. 2. We conjectured that the total epoch of 400 is appropriate 

as the oscillations in LS losses of generator and discriminator 

diminished, and the validation loss of generator converged to 

the level of the training loss after 300. The image qualities of 

test subjects depending on weight factors of the generator are 

summarized in Table II. It is notable that performances are 

better or at least similar overall when the combination of three 

losses was applied. The model trained using three losses with 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑟𝐶𝑇(𝑖) − 𝑠𝐶𝑇(𝑖)|

𝑛

𝑖=1

 (11) 
 

 𝐷𝑆𝐶𝑠𝑘𝑢𝑙𝑙 =
2|𝑉𝑟𝐶𝑇 ∩ 𝑉𝑠𝐶𝑇|

|𝑉𝑟𝐶𝑇| + |𝑉𝑠𝐶𝑇|
 (12) 

 

∆𝑃𝑅 =  
|𝑃 − �̂�|

𝑃
 (13) 

𝐷𝑆𝐶𝐴90% =  
2|𝐴90% ∩ �̂�90%|

|𝐴90%| + |�̂�90%|
 

 (14) 

∆𝐹=  √
(𝐶𝑥 − �̂�𝑥)

2
+ (𝐶𝑦 − �̂�𝑦)

2

+(𝐶𝑧 − �̂�𝑧)
2  (15) 

 
Fig. 2. Loss curves during the cGAN model training using Z-scored T1w MRI. 

(a) LS losses of generator and discriminator. (b) Training and validation loss of 

the generator. All three losses in the generator as represented in Eqs. (3) to (5) 

were combined in (b). 

 
 

TABLE II 

IMAGE QUALITIES ON WEIGHT FACTORS 

Model MAEhead MAEskull DSCskull 

MPD 

[λ1=1, λ2=40 , λ3=0] 
98.62±15.89 303.27±40.86 0.86±0.04 

GDL 

[λ1=1, λ2=0 , λ3=30] 
108.14±11.63 310.56±30.75 0.86±0.02 

MPD = GDL 

[λ1=1, λ2=20 , λ3=20] 
94.95±13.5 299.95±41.68 0.87±0.03 

MPD > GDL 

[λ1=1, λ2=30 , λ3=10] 
93.80±13.40 299.26±41.20 0.87±0.03 

MPD < GDL 

[λ1=1, λ2=10 , λ3=30] 
94.65±16.71 303.71±46.40 0.87±0.03 
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the greater MPD than GDL showed the lowest MAEs and the 

highest DSCskull. The corresponding model was adapted to 

investigate the effect of MRI normalization, in which the Z-

score normalization outperformed raw or HM normalization 

(Table III). The image qualities from the Z-score normalization 

model were MAEhead = 85.72 ± 9.50, MAEskull =280.25 ± 24.02, 

and DSCskull = 0.88 ± 0.02 across 15 test subjects. Fig. 3 shows 

that the model can generate sCT similar to rCT. Particularly, 

soft tissues were generated with virtually no error (i.e., a 

difference close to 0 HU; Fig. 3d). Although the model can 

reconstruct anatomical structures comparable to rCT, there are 

HU intensity discrepancies in the cancellous bone of the skull. 

Most of the discrepancies exist in the interface regions between 

different media, especially between the air and bone. The first 

(axial) and second row (coronal) in Fig. 3e showed similar 

tendencies across the soft tissue and skull. There were 

mismatches across the nasal regions in the third row (sagittal), 

which resulted in relatively blurry images. The estimation of 

skull characteristics and the acoustic simulation were 

performed using the Z-score based sCT. 

B. Skull characteristics 

As shown in Fig. 4, significant correlations between sCT and 

rCT in terms of skull characteristics were observed (r = 0.95, p 

< 0.001 for SDR; r = 0.90, p < 0.001 for ST). Furthermore, as 

Table Ⅳ shows, there was no statistically significant difference 

between sCT and rCT in terms of skull characteristics. 

C. Acoustic simulation 

Fig. 5 shows an example of the 2D normalized acoustic 

pressure distribution when targeting dACC. The absolute 

difference in acoustic simulation between rCT and sCT is 

shown in the last column. Fig. 6 is the 3D version of acoustic 

simulation from another subject. The simulated 3D focal region 

(i.e., 𝐴90% ) and overlapped area (i.e., 𝐴90%  ∩ �̂�90% ) are 

depicted in the last row. The overall mean and standard 

TABLE III 

IMAGE QUALITIES ON MRI NORMALIZATION 

Model MAEhead MAEskull DSCskull 

Raw 93.80±13.40 299.26±41.20 0.87±0.03 

Z-score 85.72±9.50 280.25±24.02 0.88±0.02 

HM 91.02±17.18 300.81±48.06 0.87±0.04 

 

 
 
Fig. 3. Axial, coronal, and sagittal view of (a) MRI, (b) rCT, and (c) sCT data from a representative test subject (S9). (d) Difference maps in HU intensity produced 

by subtracting rCT from sCT. (e) The profile plot along the red line in (b) and yellow dotted line in (c).  

 

TABLE Ⅳ 

COMPARISON OF SKULL CHARACTERISTICS 

Target 
SDR ST 

rCT sCT p rCT sCT p 

M1 0.54±0.17 0.55±0.14 0.56 6.31±1.2 6.57±0.75 0.16 

V1 0.58±0.14 0.60±0.11 0.08 6.27±1.12 6.5±0.82 0.07 

dACC 0.55±0.14 0.55±0.12 0.58 6.55±1.13 6.86±0.73 0.07 

 

 
 

Fig. 4. Correlations of skull characteristics between rCT and sCT for the 

three  target regions (M1, V1 and dACC). 
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deviation (STD) for acoustic simulation evaluation were ∆PR = 

3.11 ± 2.97 %, DSCA90% = 0.83 ± 0.08, and ∆F = 0.86 ± 0.52 

mm. The evaluation result for each of the three target regions is 

summarized in Table Ⅴ and Fig. 7. 

IV. DISCUSSION 

In the present study, we investigated the feasibility of 

acoustic simulation using cGAN-generated sCT for tFUS 

applications. We suggested a 3D-cGAN model incorporating 

various loss functions that enhanced the quality of the synthetic 

images. The CT and MRI data from 15 subjects were used to 

train the proposed model, and the data from the remaining 15 

subjects were used for evaluation of the trained model. The 

performance depending on weight factors in loss functions and 

normalization schemes of MRI were also investigated. The 

quality of the generated sCT was overall best from the cGAN 

model with weight factors, [λ1=1, λ2=30, λ3=10] using Z-scored 

MRI with average MAEskull of 280 HU and DSCskull of 0.88 

across the 15 test subjects. In terms of skull characteristics 

(SDR and ST), there was no significant difference between rCT 

and sCT for all target regions. The acoustic simulation results 

also showed a high similarity between rCT and sCT 

(∆PR=3.11 %, DSCA90%=0.83, and ∆F =0.86 mm). 

We showed that the cGAN model performed best when three 

losses (LS, MPD, and GDL) were combined together compared 

to if only one of either MPD or GDL was added to the LS loss. 

This finding is in line with the previous studies that models with 

GDL alleviated the blurry issue of synthetic images compared 

to the models without GDL [36], [44]. The cGAN model trained 

without MPD, however, resulted in the largest error, and the 

cGAN with three losses combined and with highly weighted 

MPD showed the best performance (Table II). This indicates 

that minimizing direct difference (i.e., MPD) plays an important 

role in image generation tasks. An additional cost function to 

minimize derivative values via GDL helped to further enhance 

the quality of generated CT images. Future work is warranted 

to systematically change the weight factors in generator loss 

and consequently optimize these hyperparameters for a broader 

range of candidate values. In addition to the performance 

varying depending on the weight factors in the loss function, 

the normalization scheme of MRI also affected the quality of 

the generated CT images. Z-score normalized MRI 

substantially improved the sCT (Table III). The HM 

normalization showed similar results with the non-normalized 

method. Previous studies reported that image synthesis results 

TABLE Ⅴ 

EVALUATION OF ACOUSTIC SIMULATION RESULTS 

Target ∆PR (%) DSCA90% ∆F (mm) 

M1 3.84±2.97 0.81±0.09 0.90±0.55 

V1 2.05±2.19 0.86±0.07 0.75±0.50 

dACC 3.45±2.84 0.82±0.09 0.94±0.51 

Mean±STD 3.11±2.79 0.83±0.08 0.86±0.52 

 

 
Fig. 5. Acoustic simulation results comparing sCT and rCT when targeting dACC in test subjects (a for S15 in the low SDR group with high skull thickness; b for 

S1 in the high SDR group with low skull thickness). The absolute difference between the pressure maps is indicated in the last column. The point (i.e., ‘×’) in the 

brain is the intended target. 
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were stable across MRI normalization methods, however, the 

optimal scheme for MRI intensity normalization also depends 

on various conditions such as raw MRI intensity ranges and 

adopted models [30], [33]. We have also demonstrated that the 

MRI normalization scheme altered the quality of the synthetic 

CT, stressing the importance of the systematic investigation 

across various normalization methods for MRI in a future study. 

The image quality evaluation results (MAEhead = 85.72 ± 9.50, 

MAEskull = 280.25±24.02, and DSCskull = 0.88±0.02) 

outperform the previous studies based on atlas (MAEhead = 

113.4±17.6 HU) [45], classification (MAEhead = 147.5±8.3 HU, 

MAEskull = 422.5±33.4 HU) [46], and deep learning (MAEhead 

= 120.1±20.4, MAEskull = 399.4±51.8) [37]. In addition, a skull 

characteristics evaluation was performed since the 

inhomogeneity and thickness of the skull also crucially affect 

acoustic simulation results . The SDRs determined by rCT and 

sCT showed high correlations for all targets (r = 0.95), 

suggesting that the HU intensity distribution of the skull derived 

from sCT is similar to that from rCT (Fig. 4). This result is 

comparable to the correlation of SDR (r = 0.88) in the previous 

study [10]. The ST values also showed high correlation (r = 0.90) 

with no significant difference for any target region tested (p > 

0.05). The ST result is congruent with the outperformance in 

DSCskull (0.88±0.02), suggesting that sCT can effectively 

capture the skull structure from the corresponding MRI. 

As shown in Fig. 3d, the errors have mainly occurred at the 

tissue interfaces. Similar issues have been repeatedly reported 

in previous studies [16], [30], [37], [47]. The ambiguous 

boundary of the air region in MRI due to artifacts from bony 

tissue could be responsible for the generation of sCT images 

with interface discrepancies. The rigid image registration 

method that we used might also contribute to this issue. For the 

acoustic simulation, rigid registration was preferred over non-

rigid registration to preserve the skull structure. However, 

Zheng et al. has shown that, compared to non-rigid registration, 

rigid registration provides poor overlays of the air region mask 

between brain CT and MRI [46]. This indicates that rigid 

registration could be insufficient to make perfectly paired 

training data for cGAN. We chose an averaging strategy to 

generate the full volume of sCT from patches, and this might be 

associated with the blurry tissue interfaces affected by outlier 

HU [30]. Thus, alternative registration methods and patch 

fusion strategies (e.g., median and voting) should be tested in 

future work. 
The overall mean of ∆PR was 3.11%, which shows that the 

acoustic simulation using sCT can accurately predict the 

intracranial acoustic pressure. The average of DSCA90% and ∆F 

were 0.83 and 0.86 mm, respectively, reflecting small 

discrepancies in the position and shape of the acoustic focus 

between sCT and rCT. We conjecture that the use of the 3D-

cGAN model is the major contributing factor to the simulation 

accuracy. Since ultrasound usually penetrates the skull along 

 
Fig. 6. Example of 3D acoustic simulation results (S13). The simulated 3D focal 

region (i.e. 𝐴90%) and overlapped area are indicated in the second column. 

 
Fig.7. Violin plot showing (a) the peak pressure ratio (∆PR), b) the dice similarity 

coefficient of acoustic focus (DSCA90%), and c) the distance between the 

acoustic focuses (∆F). Inside each violin plot is a box plot summarizing ranges. 

The orange central line and green triangle in each box indicate the median and 

mean value, respectively.  
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the oblique direction, the acoustic simulation result is 

vulnerable to 3D reconstruction errors such as the stair-step 

artifact. The 3D-cGAN method that preserves the context 

information of the anatomical structure minimizes this 

reconstruction error, leading to accurate simulation results 

when using sCT. Moreover, as we mentioned above, the main 

error of sCT was observed at the skull interface, and skull 

thickness errors were less than 0.3 mm (Table Ⅳ). Since the 

wavelength of the ultrasound that we used (i.e., 7.5 mm) was 

much greater than these errors, the simulation result might not 

be substantially affected.   

Although the sCT showed a promising possibility for MRI-

only tFUS neuromodulation, additional evaluation is required 

before using sCT in real clinical practice. Because the errors of 

sCT have greater impacts at higher fundamental frequencies 

(i.e., shorter wavelengths), we could expect that the accuracy of 

acoustic simulation with sCT would gradually decrease with 

increasing frequency. Therefore, an assessment of sCT at 

ultrasonic conditions higher than 200 kHz needs to be 

performed. Due to the limited focal length of the transducer, 

only cortical and subcortical regions were tested in this study. 

Thus, the feasibility of sCT when targeting deep brain areas 

need to be the subject of future work. As illustrated in Fig. 5, 

SDR did not have a significant impact on the accuracy of the 

acoustic simulation. Since the number of subjects with low 

SDRs (i.e., < 0.5) was relatively small in this study (7 for M1; 

6 for each of V1 and dACC), we did not conduct a statistical 

analysis. Future studies are warranted by including the 

increased number of subjects with various skull characteristics 

in this context. 

Similarly with our work, previous studies have also shown 

the possibility of using synthetic CT (i.e., sCT) in the multi-

array transducer condition [10], [18]. However, the sonication 

environment of our study with a single-element transducer for 

neuromodulation and previous studies using multi-array 

transducer for thermal ablation is very different. A relatively 

small area of the skull affects ultrasound waves when using the 

single-element transducer (i.e., 32 cm2 in this study), while 

when using the multi-array transducer, the overall shape of the 

skull may affect wave propagation. Moreover, since the 

intensity of tFUS neuromodulation is mainly less than 1MPa 

[48], which makes only negligible temperature change, the 

thermal simulation was not conducted in this study. In order to 

extend the potential applications of the proposed method, 

additional evaluation such as acoustic and thermal simulation 

on the multi-array transducer system is needed. 

The proposed model might be advantageous for preserving 

context information using 3D-cGAN due to its incorporation of 

multiple loss functions (i.e., LS, MPD, and GDL), which helped 

stabilize training and retain image details. Moreover, the 

residual blocks embedded in the generator concatenate feature 

maps from neighboring blocks. This structure focuses on the 

residuals, which indicate the differences between the two 

feature maps, and lead to an accurate mapping from MRI to CT 

[16]. The previous study reported that the GAN-based model 

accurately distinguishes the blurry images as fake, which can 

further enhance the quality of the synthetic image with a similar 

level of resolution as the ground truth image [49]. Indeed, 

Emami et al. claimed that cGAN generates higher resolution 

sCTs preventing ambiguous boundaries of soft tissue and skull 

than ResNet CNN (i.e., cGAN with discriminator removed) 

[15]. Therefore, we believe that the performance might be 

degraded when the generator is used alone without a 

discriminator, although we combined additional loss (i.e., GDL) 

in the generator. Furthermore, by utilizing a data augmentation 

strategy per epoch and patch extraction, the model could be 

trained with diverse data despite the training data being limited 

to 15 subjects. The volume of training data used in this study 

was relatively small compared to previous studies (i.e., > 25 

subjects) [17], [18], [30] Given that a previous study using 

cGAN [50] showed decreasing MAEs with increasing training 

data volumes (34-135 subjects), future investigation testing the 

proposed model with more training data sets is warranted. 

Recent studies have developed sCT generation techniques u

sing various MRI sequences (i.e., T1w, T2w, Flair, Dixon, and

 UTE) [18], [37], [51], [52]. However, clinical situations frequ

ently feature restrictions preventing the acquisition of multiple

 or specialized MRI sequences. Previous studies have demonst

rated that T1w performs the best of the conventional MRI sequ

ences when generating sCT [51], [52]. This might be associate

d with the superior anatomical structure representation of T1w 

MRI. With the evidence and its accessibility, we adopted the st

andard T1w MRI as the modality to investigate the feasibility 

of generating sCT for single-element tFUS applications. Since 

the potential issue of many MRI sequences is the poor contrast

 of bone which might induce the misclassification of surroundi

ng tissues or air, applications of bone specialized MRI such as 

UTE or ZTE have also demonstrated the feasibility in CT gene

ration [10], [13]. To the best of our knowledge, it has not yet b

een directly compared the performance of the deep learning-ba

sed method to generate CT images using bone specialized MR

I sequence and conventional MRI sequence. Investigating the a

dvantages of each sequence as inputs to cGAN would be intere

sting future work. In addition, one potential issue regarding the

 learning-based sCT is generality in the performance of the mo

del when an MRI from a different scanner is fed despite havin

g an equivalent type of sequence. Our sCT generator, like any 

other model, may be sensitive to alternative T1w images acqui

red from different pulse sequences and/or scanner vendors com

pared to a training set. This is because the intensity configurati

on across different anatomical structures of gray matter, white 

matter, cerebrospinal fluid (CSF), and non-brain areas includin

g the skull may vary depending on the imaging pulse sequence

s and/or MRI scanner vendors. Although some MRI intensity n

ormalization approaches may alleviate this issue, it has not bee

n evaluated clearly. As it's common to collect T1w MRI image

s from several candidate pulse sequences or from different sca

nner vendors in clinical practice, it would be important future 

work to investigate the robustness in the performance of the m

odel in the perspective of MRI data harmonization [53], [54]. 

 In this study, we examined the feasibility of generating sCT 

from T1w MRI for acoustic simulation in single-element 

conditions. Skull characteristics revealed by rCT and sCT 

demonstrated high correlations, and the result of acoustic 

simulation showed clinically tolerable levels of difference. This 

indicates the possibility of sCT replacing rCT for MRI-only 

tFUS treatment. The proposed use of sCT could simplify 

clinical workflow and prevent the exposure of patients and 

healthcare workers to radiation. 
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